Events

Elrig Drug Discovery Digital w/ Amparo Toboso-Navasa

Endotype-driven target identification detection using omics data

Sam Abujudeh, Marika Catapano, Paidi Creed, Jaime Domingues, Craig Glastonbury, Josep Montserrat,  Francesca Mulas, Povilas Norvaisas, Delphine Rolando, Aaron Sim, Amparo Toboso-Navasa, Hamish Tomlinson, Arpad Vezer.


Cancer, sarcopenia, diabetes, and ALS, are but a few diseases that present notable heterogeneity between patients in both symptoms and aetiology. This heterogeneity extends to the patients’ response to experimental treatments, therefore presenting a significant challenge for drug discovery.

Embracing this challenge, at BenevolentAI we have developed an approach using omics data to identify patient subgroups. Here we present this approach, illustrated with a case study from our patient stratification drug discovery programs.

Unsupervised machine learning methods can be used to identify subgroup-specific patterns; the biological interpretation of these patterns is key for the identification of endotype-specific disease-modifying targets. We have developed a systematic evaluation of the identified patterns by assessing confounding variables, clinical covariates and biological mechanisms.  Therefore, biologically meaningful subgroup-specific patterns are defined by the lack of confounding effects, their correlation with clinical variables and their implication in biological pathways. 

Our pipeline tackles the challenges of interpreting subgroup-specific patterns derived from high-dimensional omics data, while uncovering pathobiological aspects of the disease specific to a group of patients. The identification of biological mechanisms that explain a given disease in different patient subgroups will facilitate drug discovery by providing targets regulating those mechanisms.


Amparo Toboso-Navasa

Drug Discovery Scientist

At BenevolentAI, Drug Discovery Scientists with Biology, Pharmacology and Chemistry backgrounds, work together with Bioinformaticians and AI Scientists.  With our joint effort,  we focus on identifying heterogeneous diseases that will benefit from our Precision Medicine approach. We look for omics datasets that reflect this heterogeneity while capturing clinical information; this will allow our models to find patient subgroups. Then, Drug Discovery Scientists, as myself, interpret the underlying biology to find disease drivers in each endotype. Target identification is followed by target validation in experimental settings that mimic the characteristics of each patient subpopulation so we find the right target for the right patient. 



More Posts

You Might Also Like

News
Interim results for the six months ended 30 June 2022
Continued operational progress and strengthened financial position provides capital for key value inflection points and continued investment in leading technology platform.
Sep 27, 2022
News
Analyst / Investor Event
BenevolentAI announces that during its analyst / investor event and interim results presentation being held in London today, new information on the Company’s BEN-2293 Phase Ib study results will be disclosed.
Sep 27, 2022
Blog
Building the data foundations to accelerate drug discovery
Mark Davies, BenevolentAI’s SVP Informatics and Data, discusses innovations that enable BenevolentAI to leverage biomedical data in drug discovery.
Sep 22, 2022
News
Analyst / Investor Event and Interim Results
BenevolentAI is pleased to announce the full agenda for its upcoming analyst/investor event and interim results being held in London between 14:00 – 17:00 BST (09:00 – 12:00 ET) on Tuesday, 27 September 2022.
Sep 16, 2022
Video
Text & Data Mining in Drug Discovery: A Conversation with Springer Nature
Hear Mark Davies, SVP Informatics and Data, speak to Springer Nature about how BenevolentAI is leveraging the scientific literature to expedite drug discovery.
Sep 2, 2022
News
Notice of Interim Results and Analyst / Investor Event
BenevolentAI will announce interim results on the 27th of September and hold an analyst and investor event on the same day. Find out more.
Aug 26, 2022