AI in Drug Discovery Conference w/ Nathan Brown

Using Artificial Intelligence to Optimise Small-Molecule Drug Design

The concept of in silico molecular design goes back decades and has a long history of published approaches using many different algorithms and models [1,2]. Major challenges involved in de novo molecular design are manifold, including identifying appropriate molecular representations for optimisation, scoring designed molecules against multiple modelled endpoints, and objectively quantifying synthetic feasibility of the designed structures.

Recently, multiobjective de novo design, more recently referred to as generative chemistry, has had a resurgence of interest. This renaissance has highlighted a step-change in successful applications of such methods. This presentation will review the development of de novo design methods over the years including the author’s original work in this area from the early 2000s [3], to recent approaches that show great promise [4,5]. Through this review, improvements in important components of de novo design, including machine learning model predictions and automated synthesis planning, will also be presented.

Register →


[1] Nicolaou, C. A., Brown, N., Pattichis, C. S. Molecular optimization using computational multi-objective methods. Current Opinion in Drug Discovery and Development, 2007, 10(3), 316-324.

[2] Nicolaou, C .A., Brown, N. Multi-objective optimization methods in drug design. Drug Discov. Today: Technol. 2013, 10(3), e427-e435.

[3] Brown, N.; McKay, B.; Gilardoni, F. A Graph-Based Genetic Algorithm and Its Application to the Multiobjective Evolution of Median Molecules. J. Chem. Inf. Comput. Sci. 2004, 44(3), 1079-1087.

[4] Neil, D.; Segler, M.; Guasch, L.; Ahmed, M.; Plumbley, D.; Sellwood, M.; Brown, N. Exploring Deep Recurrent Models with Reinforcement Learning for Molecule Design. 2018.

[5] Brown, N.; Fiscato, M.; Segler, M. H. S. Vaucher, A. C. GuacaMol: Benchmarking Models for De Novo Molecular Design. J. Chem. Inf. Model. 2019. 53(3), 1096-1108.

Nathan Brown

Director of Chemoinformatics & Computational Chemistry

Nathan is recognised as a global thought-leader in Chemoinformatics and computational drug discovery, and is the inventor of the first multiobjective de novo molecular design system. He joined BenevolentAI in 2017 from The Institute of Cancer Research, London where he founded and led the In Silico Medicinal Chemistry team for over ten years, with significant scientific impact on drugs in active clinical trials, and the development of new algorithms for drug discovery. Nathan has published over 40 papers and three books; is a Fellow of The Royal Society of Chemistry; and is the 2017 recipient of the Corwin Hansch Award.

More Posts

You Might Also Like

AI in Drug Discovery
This blog seeks to demystify the application of artificial intelligence (AI) and machine learning (ML) in drug discovery by exploring some of the challenges, opportunities and progress that has been achieved in the field so far.
Jul 13, 2021
BenevolentAI announces the appointment of biopharma luminary Dr François Nader as Chairman
Dr Nader joins BenevolentAI as it embarks on ambitious growth plans to scale its AI platform, partnerships and drug portfolio.
Jul 9, 2021
Product design in AI-drug discovery: how to design products for and with scientific users
User interfaces can help drug discovery scientists to leverage insights from AI algorithms. Yet, designing products to enable scientific discovery is complex. Our product designer, Róża explores the key steps in her design process.
Jul 6, 2021
Baricitinib, first identified by BenevolentAI as a COVID-19 treatment, is granted emergency use in India in response to its escalating crisis
Baricitinib - first identified by BenevolentAI as a potential COVID-19 treatment - is accelerated for use in hospitalised patients in India following a continued surge in cases and fatalities.
May 5, 2021
A New Era in Target Discovery: Collaborating with AstraZeneca on CKD and IPF
Finding the right target underpins the success of the entire drug discovery process. Learn how BenevolentAI’s collaboration with AstraZeneca is making a difference in CKD and IPF.
Apr 23, 2021
Data from Eli Lilly’s COV-BARRIER trial shows baricitinib reduced deaths in hospitalised COVID-19 patients by 38%
The latest data published in Eli Lilly’s Phase 3 randomised, double-blind, placebo-controlled study (COV-BARRIER) shows the largest clinical effect reported to date for a reduction in mortality in the COVID-19 patient population
Apr 8, 2021