27 May 2022

ACL 2022

Authors: Angus Brayne, Maciej Wiatrak, Dane Corneil


In the real world, many relational facts require context; for instance, a politician holds a given elected position only for a particular timespan. This context (the timespan) is typically ignored in knowledge graph link prediction tasks, or is leveraged by models designed specifically to make use of it (i.e. n-ary link prediction models). Here, we show that the task of n-ary link prediction is easily performed using language models, applied with a basic method for constructing cloze-style query sentences. We introduce a pre-training methodology based around an auxiliary entity-linked corpus that outperforms other popular pre-trained models like BERT, even with a smaller model. This methodology also enables n-ary link prediction without access to any n-ary training set, which can be invaluable in circumstances where expensive and time-consuming curation of n-ary knowledge graphs is not feasible. We achieve state-of-the-art performance on the primary n-ary link prediction dataset WD50K and on WikiPeople facts that include literals - typically ignored by knowledge graph embedding methods.

Back to publications

Latest publications

07 Dec 2022
NeurIPS 2022
sEHR-CE: Language modelling of structured EHR data for efficient and generalizable patient cohort expansion
Read more
07 Dec 2022
EMNLP 2022
Proxy-based Zero-Shot Entity Linking by Effective Candidate Retrieval
Read more
03 Nov 2022
AKBC 2022
Pseudo-Riemannian Embedding Models for Multi-Relational Graph Representations
Read more