24 Nov 2018

NeurIPS 2018

Authors: Rim Assouel, Mohamed Ahmed, Marwin H Segler and Amir Saffari (BenevolentAI), Yoshua Bengio (MILA)


Generating novel molecules with optimal properties is a crucial step in many industries such as drug discovery. Recently, deep generative models have shown a promising way of performing de-novo molecular design. Although graph generative models are currently available they either have a graph size dependency in their number of parameters, limiting their use to only very small graphs or are formulated as a sequence of discrete actions needed to construct a graph, making the output graph non-differentiable w.r.t the model parameters, therefore preventing them to be used in scenarios such as conditional graph generation. In this work we propose a model for conditional graph generation that is computationally efficient and enables direct optimisation of the graph. We demonstrate favourable performance of our model on prototype-based molecular graph conditional generation tasks.

Back to publications

Latest publications

09 Oct 2023
Learning the kernel for rare variant genetic association test
Read more
24 Aug 2023
Associating biological context with protein-protein interactions through text mining at PubMed scale
Read more
07 Dec 2022
NeurIPS 2022
sEHR-CE: Language modelling of structured EHR data for efficient and generalizable patient cohort expansion
Read more