Blog

Research: Biomedical relation extraction (BERT)

In natural language processing, words must be given numerical representations before they can be passed as input to a machine learning model.

A word is usually represented as a vector (a list of numbers). These word vectors must adequately capture the meaning of the words; semantically related words should have similar numbers. The better these representations, the stronger the performance of the machine learning model is likely to be.

Often, many methods of learning word vectors give a word the same vector regardless of the context that it appears in. However, it is not unusual for a word to have several different meanings. A classic example of this is the word “bank” in the following two sentences:

“I walked along the river bank”,
“I deposited some money into my bank account”.

If the same vector is used to represent “bank” in both instances, this impairs the performance of the downstream machine learning model which takes these word vectors as input.

Over the last few years, a lot of research has been done on learning contextual word vectors; these are word vectors which vary depending on the context in which the word appears. This enables the same word to have different vectors depending on how it is used in a sentence. A recent paper (Devlin et al, 2018) introduced BERT (Bidirectional Encoder Representations from Transformers), a new way of learning contextual word vectors. BERT utilises a powerful encoder architecture which is capable of modelling longer range dependencies between words. It also proposed an innovative way of capturing the context both before and after the word in the sentence. With these better contextual vectors, BERT achieved state of the art performance on several tasks within natural language processing.

In a recent paper, we proposed a new relation extraction model built on top of BERT. Given any paragraph of text (for example, the abstract of a biomedical journal article), our model will extract all gene-disease pairs which exhibit a pre-specified relation. In our paper, the relations we were interested in concerned the function change experienced by a gene mutation which affects the disease progression. The word vectors supplied by BERT provide our model with a way of encoding the meaning expressed in the text in regard to our entities of interest. We then further fine-tune this encoding so that it can more accurately identify when a paragraph of text contains a gene-disease relation of interest. Such relation extraction models are crucial in drug discovery; there are too many journal articles published every day for a human to read and summarise. A machine learning model capable of automatically extracting relevant gene-disease pairs can greatly accelerate this process.

More Posts

You Might Also Like

Blog
Tech Nation Visa: the gateway to world-leading UK tech jobs
Drawing attention to the Tech Nation Visa, a great initiative that enables the brightest international talent to live and work in the UK.
Feb 19, 2021
News
BenevolentAI announces first patient dosed in its Atopic Dermatitis clinical trial
A molecule designed and developed by BenevolentAI to treat mild to moderate Atopic Dermatitis has entered clinical trials.
Feb 11, 2021
News
BenevolentAI and AstraZeneca achieve collaboration milestone with novel AI-generated chronic kidney disease target
BenevolentAI and AstraZeneca hit collaboration milestone with an AI-generated CKD target from the partnership entering AstraZeneca’s portfolio.
Jan 27, 2021
News
ACTT-2 trial results published in the New England Journal of Medicine validate baricitinib’s efficacy in combination with remdesivir in hospitalised COVID-19 patients
Peer-reviewed data from the ACTT-2 further validate BenevolentAI’s hypothesis for baricitinib as a potential COVID-19 treatment.
Jan 15, 2021
Blog
Joanna Shields speaks at the Global Partnership on Artificial Intelligence
BenevolentAI CEO Joanna Shields opened the final plenary of the Global Partnership on Artificial Intelligence (GPAI) summit with a powerful message on the future of AI.
Dec 11, 2020
Blog
BenevolentAI wins Innovation Award at 2020 Scrip Awards
BenevolentAI wins the Innovation Award at the prestigious 2020 Scrip Awards for our work in artificial intelligence applied drug discovery.
Dec 11, 2020