Blog

Advancing Oncology Drug Development with Precision Medicine

Traditionally a disease has been defined by its clinical presentation and observable characteristics, not by the underlying molecular mechanisms, pathways and biological processes specific to a particular patient.

This can lead to classifying what are often highly heterogeneous medical conditions as a single disease.

In recent years, the healthcare industry has made significant steps in further understanding and targeting the underlying molecular cause of disease, however there is much more to be done. Consequently, patients with the same disease diagnosis tend to receive the same treatment. This kind of one-size-fits-all treatment strategy inadequately accounts for inter-individual variability between patients or the stage of their disease course. The result is that a large number of patients fail to respond to the treatments they are prescribed for.

One obvious example is cancer, which is a heterogeneous disease, with both between-patient variability and differences in the characteristics of disease within a given patient, making developing long-term cures challenging in many cancer types. Over the past decades, there have been major advances in developing cancer therapeutics; patients who receive targeted therapies have benefitted from improved survival [1,2,3]. However, there is still a huge unmet need for patients who either do not respond to existing treatments or develop resistance to them.

Our Precision Medicine team is working to change this by starting drug discovery from endotypes - groups of patients with the same underlying cause of disease.  By stratifying patients, we believe we have a better chance at identifying responder patients, designing more effective clinical trials and developing new therapies for complex and heterogeneous diseases like cancer.

Our team takes a multi-disciplinary approach to leverage the vast collection of patient-level data produced by recent developments in technology. We apply machine learning, bioinformatics, biological knowledge, and translational medicine to advance our drug discovery programs with a data driven approach. We use unsupervised machine learning techniques to capture patient heterogeneity and uncover different underlying biological mechanisms within the disease. We then incorporate these new insights into our core biomedical knowledge graph for drug target identification.

Our approach has been used in multiple discovery programs in disease areas such as neurology and oncology. Recently we announced our collaboration with Novartis Global Drug Development, where we are investigating new indications and responders for Novartis oncology medicines currently in clinical development. With this initiative, we combine expertise from both parties to further expedite the process of delivering the next generation of cancer therapies to the clinic.  

Our focus on precision medicine is important because we are translating scientific discoveries into real-world practice more efficiently, to more precisely target medicines for the patients who need them most.


Pijika Watcharapichat, Senior Research Scientist, Health Informatics

More Posts

You Might Also Like

Blog
Transforming drug discovery with AI: how we’re building and nurturing the best talent for the job
At BenevolentAI, we are on a mission to bring life-changing medicines to patients, and we are looking for collaborative, mission-driven people to join our tech, drug discovery and business operations teams in London, Cambridge and New York.
Oct 17, 2021
News
BenevolentAI identifies novel target for ulcerative colitis and advances candidate to IND/CTA-enabling studies
BenevolentAI’s AI-Drug Discovery platform uncovered a novel target not previously linked to ulcerative colitis and advanced candidate to preclinical studies.
Oct 14, 2021
Blog
Measuring bias: moving towards more inclusive health research outcomes #stateofai
Having shared our open-source Diversity Analysis Tool last year, we were tasked to investigate and demonstrate the lack of diversity in biomedical data as part of the State of AI Report 2021.
Oct 12, 2021
Blog
Expert-augmented computational drug discovery for rare diseases
Combining scientific expertise, computational tools and our AI-enhanced biomedical knowledge graph to successfully uncover a new drug combination for treating a rare brain cancer in children.
Sep 28, 2021
News
BenevolentAI appoints Dr John Orloff to its Board of Directors
Biopharmaceutical veteran Dr John Orloff joins the BenevolentAI Board as a Non-Executive Director as it scales the development of its leading AI-derived drug pipeline.
Sep 9, 2021
Blog
AI in Drug Discovery
This blog seeks to demystify the application of artificial intelligence (AI) and machine learning (ML) in drug discovery by exploring some of the challenges, opportunities and progress that has been achieved in the field so far.
Jul 13, 2021