01 Dec 2019

NeurIPS 2018

Authors: Daniel Neil, Joss Briody, Alix Lacoste, Aaron Sim, Paidi Creed, Amir Saffari


In this work, we provide a new formulation for Graph Convolutional Neural Networks (GCNNs) for link prediction on graph data that addresses common challenges for biomedical knowledge graphs (KGs). We introduce a regularized attention mechanism to GCNNs that not only improves performance on clean datasets, but also favorably accommodates noise in KGs, a pervasive issue in real-world applications. Further, we explore new visualization methods for interpretable modelling and to illustrate how the learned representation can be exploited to automate dataset denoising. The results are demonstrated on a synthetic dataset, the common benchmark dataset FB15k-237, and a large biomedical knowledge graph derived from a combination of noisy and clean data sources. Using these improvements, we visualize a learned model's representation of the disease cystic fibrosis and demonstrate how to interrogate a neural network to show the potential of PPARG as a candidate therapeutic target for rheumatoid arthritis.

Back to publications

Latest publications

07 Dec 2022
NeurIPS 2022
sEHR-CE: Language modelling of structured EHR data for efficient and generalizable patient cohort expansion
Read more
07 Dec 2022
EMNLP 2022
Proxy-based Zero-Shot Entity Linking by Effective Candidate Retrieval
Read more
03 Nov 2022
AKBC 2022
Pseudo-Riemannian Embedding Models for Multi-Relational Graph Representations
Read more