Using Artificial Intelligence to Optimise Small-Molecule Drug Design

Here at BenevolentAI, we are unlocking the power of scientific data so no disease goes untreated.

We achieve this in a variety of ways, right from initial target identification and validation, through hit discovery and lead optimisation, and finally into the clinic, making us the only end-to-end drug discovery company driven by Artificial Intelligence (AI) in the world.

We power this innovation by using structured and unstructured data sources to learn new insights and relationships at scale that otherwise would not be possible. Here, a key differentiator is how we use AI to extract the knowledge locked in the scientific literature and patents to boost our knowledge graph of entity relationships of genes, targets, molecules, and diseases.

My role at BenevolentAI, as head of the Chemoinformatics team, is to guide the scientific direction and validity in the development of our molecular design platform. The size of drug-like chemistry space is truly vast. As an analogy, if we take six Lego bricks, it is possible to construct them in almost one billion unique configurations. Replacing the bricks for atoms, and scaling the number up from six to the more typical size of a drug-like molecule of 20-30 heavy atoms, the size of the space expands dramatically to truly astronomical proportions. The size of this space makes it technically challenging to exhaustively examine every theoretical molecule, instead we use advanced AI algorithms to effectively sample that space to explore and exploit the most promising candidates to take to synthesis and testing.

Drug discovery itself is an inherently multiobjective optimisation process, with many different parameters needed to be optimised in concert. We score each of the candidate solutions with multiple predictive models using a range of appropriate parameters, including the introduction of synthetic tractability, and even planning synthetic routes.

The platform we have developed at BenevolentAI gives us the power to not only tell our scientists what to make, but also how to make the molecules that are of most relevance to our drug discovery programmes, thereby helping to optimise the whole of our AI-driven drug discovery pipeline.

More Posts

You Might Also Like

Data from Eli Lilly’s COV-BARRIER trial shows baricitinib reduced deaths in hospitalised COVID-19 patients by 38%
The latest data published in Eli Lilly’s Phase 3 randomised, double-blind, placebo-controlled study (COV-BARRIER) shows the largest clinical effect reported to date for a reduction in mortality in the COVID-19 patient population
Apr 8, 2021
BenevolentAI named as one of Fierce Medtech’s Fierce 15 of 2020
BenevolentAI was selected as one of the most promising private companies in the industry by Fierce Medtech in its Fierce 15 2020 list.
Mar 8, 2021
Tech Nation Visa: the gateway to world-leading UK tech jobs
Drawing attention to the Tech Nation Visa, a great initiative that enables the brightest international talent to live and work in the UK.
Feb 19, 2021
BenevolentAI announces first patient dosed in its Atopic Dermatitis clinical trial
A molecule designed and developed by BenevolentAI to treat mild to moderate Atopic Dermatitis has entered clinical trials.
Feb 11, 2021
BenevolentAI and AstraZeneca achieve collaboration milestone with novel AI-generated chronic kidney disease target
BenevolentAI and AstraZeneca hit collaboration milestone with an AI-generated CKD target from the partnership entering AstraZeneca’s portfolio.
Jan 27, 2021
ACTT-2 trial results published in the New England Journal of Medicine validate baricitinib’s efficacy in combination with remdesivir in hospitalised COVID-19 patients
Peer-reviewed data from the ACTT-2 further validate BenevolentAI’s hypothesis for baricitinib as a potential COVID-19 treatment.
Jan 15, 2021