Events

TOPRA Fellows' Webinar: Data Diversity and Inclusion

It is well documented that the lack of representation in biomedical research is leading to a data gap that can no longer be overlooked if we are to avoid exacerbating existing health inequalities in the age of digital health and precision medicine.

Advances in machine learning (ML) techniques are allowing the scientific community to unlock the potential of biomedical data and extract valuable insights like never before. Yet amidst the hope sits a certain uncomfortable reality: not everyone is set to benefit from these advances. At the heart of innovation in healthcare lie the datasets used to train the algorithms, such as data from scientific literature, clinical trials, omics, and patient real-world data. These datasets are the lifeblood of new technologies. Yet, they have significant shortcomings, since the majority of medical research is conducted on white and predominantly male populations of European descent. This lack of diversity in data has serious consequences for medical care, as the products discovered through the use of these data may not benefit everyone. For example , as Covid-19 is already disproportionately affecting people of colour, working with data sets that do not include that population equally could further exacerbate the health disparities.

→ Read the full blog here

As the industry now seek to put in place solutions, it is important to highlight the role that regulators play. The FDA is at the forefront of this; the question is what is EMA doing?

Questions:

  1. Is there an issue with diverse representation clinical research and is this recognised by European regulatory agencies?
  2. EMA has a number of guidance documents on considerations for sub-populations such as patients with impaired elimination, the elderly, children, women and ethnic subgroups. Are these guidance documents making sufficient impact on inclusion and diversity in research?
  3. What role do regulators have in ensuring adequate representation in data supporting marketing authorisation

→ Register here


Peju Oshisanya

Peju Oshisanya

Clinical Drug Development Leader at BenevolentAI

Peju is an innovative operational strategy expert with over 15 years wide-ranging experience relating to strategic programme leadership, planning and management of clinical trials with responsibility for global clinical programmes. She has extensive experience in working in early drug discovery and exploratory phases focused on the transition of early stage assets to clinical development. She has held leadership positions in programme management responsible for key clinical programmes and assets within Eli Lilly, Sanofi Aventis, Pfizer and Takeda. In her current role at BenevolentAI, she is responsible for driving the asset strategy to maximise the value of both early and late phase drug development programmes.

More Posts

You Might Also Like

Blog
Transforming drug discovery with AI: how we’re building and nurturing the best talent for the job
At BenevolentAI, we are on a mission to bring life-changing medicines to patients, and we are looking for collaborative, mission-driven people to join our tech, drug discovery and business operations teams in London, Cambridge and New York.
Oct 17, 2021
News
BenevolentAI identifies novel target for ulcerative colitis and advances candidate to IND/CTA-enabling studies
BenevolentAI’s AI-Drug Discovery platform uncovered a novel target not previously linked to ulcerative colitis and advanced candidate to preclinical studies.
Oct 14, 2021
Blog
Measuring bias: moving towards more inclusive health research outcomes #stateofai
Having shared our open-source Diversity Analysis Tool last year, we were tasked to investigate and demonstrate the lack of diversity in biomedical data as part of the State of AI Report 2021.
Oct 12, 2021
Blog
Expert-augmented computational drug discovery for rare diseases
Combining scientific expertise, computational tools and our AI-enhanced biomedical knowledge graph to successfully uncover a new drug combination for treating a rare brain cancer in children.
Sep 28, 2021
News
BenevolentAI appoints Dr John Orloff to its Board of Directors
Biopharmaceutical veteran Dr John Orloff joins the BenevolentAI Board as a Non-Executive Director as it scales the development of its leading AI-derived drug pipeline.
Sep 9, 2021
Blog
AI in Drug Discovery
This blog seeks to demystify the application of artificial intelligence (AI) and machine learning (ML) in drug discovery by exploring some of the challenges, opportunities and progress that has been achieved in the field so far.
Jul 13, 2021