27 May 2022

ACL 2022

Authors: Angus Brayne, Maciej Wiatrak, Dane Corneil


In the real world, many relational facts require context; for instance, a politician holds a given elected position only for a particular timespan. This context (the timespan) is typically ignored in knowledge graph link prediction tasks, or is leveraged by models designed specifically to make use of it (i.e. n-ary link prediction models). Here, we show that the task of n-ary link prediction is easily performed using language models, applied with a basic method for constructing cloze-style query sentences. We introduce a pre-training methodology based around an auxiliary entity-linked corpus that outperforms other popular pre-trained models like BERT, even with a smaller model. This methodology also enables n-ary link prediction without access to any n-ary training set, which can be invaluable in circumstances where expensive and time-consuming curation of n-ary knowledge graphs is not feasible. We achieve state-of-the-art performance on the primary n-ary link prediction dataset WD50K and on WikiPeople facts that include literals - typically ignored by knowledge graph embedding methods.

Back to publications

Latest publications

09 Oct 2023
Learning the kernel for rare variant genetic association test
Read more
24 Aug 2023
Associating biological context with protein-protein interactions through text mining at PubMed scale
Read more
07 Dec 2022
NeurIPS 2022
sEHR-CE: Language modelling of structured EHR data for efficient and generalizable patient cohort expansion
Read more